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Pressure-vessel covers mainly work under quasistatic pressure, although there are cases of  pulsed loading, such as in 

protective equipment and systems with explosive or other energy release. Here we consider only calculating the optimum shape 

for a cover for a circular hole in quasistatic loading by a uniform pressure. 

The equal-strength principle [1] implies that the maximal equivalent stresses a i attain the yield point a s at each point 

in a deformable linearly elastic body. For example, this can be applied to optimize a clamped circular plate under uniform 

pressure, where the mass is reduced by 20% by profiling the thickness [1]. The calculation scheme for the cover is that of a 

thin shell of  rotation, in which we incorporate only the membrane components of the stresses and neglect edge effects. 

We consider technologically simple cover forms. 

Spherical Segment with Radius a at the Base (a is the Radius of the Hole to be Covered) and with Unknown 

Sphericity Radius R. Here equal strength is provided by constant shell thickness 8. One determines the necessary mass m from 

the Mises yield criterion on the basis that the principal stresses are a 1 = a 2 = pR/25 = a s, which gives for a pressure p that 

nppa3 1 (1 _ ~ _ ' - ~ ,  m -  ~ 3  

in which ~ = a / R  (0 < ~ < 1), and p is the density. The minimum mass is attained for ~ = 0.8660, i.e., with Pop t = 1.155a: 

nppa 3 . . . . .  
min(m) = %---~--0./09S. 

The height of the cover is hop t = 0.5775a. 

Conical Cover with Semivertex Angle e and Unknown Dependence of Thickness ~ on Current Radius r (0 _< r 

<. a). The following are the meridional stressed % and annular ones a o [2]: 

pr pr 
o "  - -  2 6 ( r )  co s  9 '  o'r - -  r  - -  2 0 ' .  

We derive ~(r) providing yield throughout the volume of the material in the conical shell: 

1 Vt3pr 1 

Then 8(0 = ~3"pr/2usfl*(~p) = const r for a given ~p, i.e., ~ is proportional to r*. Integration gives the mass as 

1 ~ppa___._ 3 I 

m -  ~ % -f2(~o),//2(~~ sin , cos r 

*Although 8 ~ 0 for r --, 0 is physically unrealizable, it is always possible to produce the required thickening in the region of 
the pole with only a minor effect on the total mass. 
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We minimize f2 with respect to ,p to get min(f2) = 2.0 for tPop t = 45 ~ The optimal mass is rain(m) = 1.1547 "xppa3/as, which 

is about 50% greater than the mass of an optimal cover as a spherical segment. The height of  the cover is hop t = a, which is 
73.2% larger than in the previous case. The necessary thickness is 

pr 
5(r) = ~-1.2247. 

These shapes (sphere and cone) are strictly free from moments when the corresponding edge conditions are met 

because: 1) the moment-free condition [2] v = - w '  is met for a sphere, where v = 0 is the displacement along the tangent 

to the meridian and w'  = 0 is the derivative of the displacement w along the normal to the shell with respect to the meridian 

angle, and 2) in the case of  a cone, the radius of curvature of the section for the median surface along the meridian (r 1 in [2] 

symbols) is equal to infinity, and from (3) and (4) in [2] we get that the bending moments M~ = M 0 = 0, so these solutions 

are actually optimal (within the accuracy of the membrane approximation). 

Interest attaches to whether there are other shapes for equal strength covers* (Fig. 1) with less minimal mass. We 

consider deriving the shape r(x) of  the cover that minimizes the mass for given p = const and a while satisfying the equal- 

1 1 dr 
strength condition. Then ~p is variable and cos~o - ~ - f3(r~) ( r  = d'xx) and similarly we get 

rr dr 
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P~L( r' 5' r )  pr 
The yield condition gives % - v~6(r) L(r '  r ,  r ) ,  whence 5 (0  - d'2-% " The form of L(r ,  r ,  r )  dependent on the 

yield of criterion. A mass element is 

dm = 2 n v 3 p d s  - ~ l - 2 ~ p p r 2  

The total shell mass is 

m = V'2Jr -~ f r2f4(r, r, r ) , f ' i - - '~dx .  
o 

Transformation gives (with the Mises criterion) 

PP f r~/3(1 + ~)2 + 3 r r ( l  + ~) + r2~dx = nppj  % �9 (1) m = 7g ~ 0 

To minimize m, one has to solve the variational problem for the integral J having variable bound h in relation to the 

function r(x). That function should be smooth, positive-definite, and satisfy the boundary conditions r(0) = 0 at x = 0 and r(h) 

= a a t x = h = B a .  

For estimation purposes, we neglect the addkional constraints on r(x) needed to provide a strict moment-free shape. 

This gives an estimate for the minimum mass with a safety margin, since one considers a wider class of  shapes than for that 

constraint. If the result for r(x) that minimizes m is not strictly free from moments, one needs to increase m to compensate 

for the incomplete homogeneity in the state of strain. The solution is derived numerically by minimizing the functional on 
approximating r(x) by a polynomial: 

I n 
r(x) = ~ x + ~ ,~,(x' - ~',, ')x 

iffil 

(first form) or a power law r(x) = a second form), which satisfy the boundary conditions. 

We have determined the parameters B = h/a, ~'1, ~2( N = 2) and 3, that minimize J in (1). The following local minima 
have been found 

fl = 0.6465, a~ = -3 ,4073,  a a = 1.3783, d = 0.7736a3; (a) 

fl = 0.4904, y = 0,4197, J = 0.8547a 3. (b) 

*A solution has been obtained [3] for the shape of an equal-resistance dome under its own weight. 
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Fig. 1 

Solution a is better than the solution for the optimal sphere by 1%, while solution b is better by I 1% as regards optimal 

mass relative to a sphere and with a relative height/3 less by 15 %. Increasing the number N of terms summed in the polynomial 

for r(x) from 2 to 3 allows one to reduce J from 0.7736a 3 to 0.7588a 3, which about 1.4% less than for a sphere. This is 

attained with/3 = 0.6116, a t = -7 .7565,  a 2 = 8.2749, a 3 = -3 .7832.  Although one can increase the number of series 

terms, there is no guarantee of finding the global minimum [1], and one can also use other approximations for r(x), but the 

estimate does show that one should not expect any substantial advantage from varying the form by comparison with the optimal 

spherical one. Figures 2 and 3 show the profiles and thicknesses, where we show the t(~) dependence in t = r / a ,  "~ = x / a  

coordinates together with ~(~)* (~ = 2as6/p). 

These estimates and design limitations led us to adopt a cone with semivertex angle 52 ~ for realization of a strong 

cover, which passes without a kink on the outer surface into a spherical segment of the same thickness (Fig. 4). That shape 

is preferable for dynamic loading on close explosion of a charge. The spherical segment is linked to the cone along the tangent 

to the outer surface without thickness change, and it is 41% stronger than the cone. The line of  contact between the sphere and 

the cone has a kink on the inner surface. The step in the curvature and the kink in the generator do not allow one to attain the 

moment free state in the linkage zone. The moment-free state is also violated near the supporting rings. This requires a two- 

dimensional analysis of edge effects in the state of stress and strain and the carrying capacity of the actual structure. We used 

the SINTEZ program, which employs the finite-element method for an axisymmetric body subject to elastic and plastic strains 

[4]. We found that yield sets in at the point a i max (Fig. 4) in the real structure at a load of 77.2% of the limit given by the 

membrane-scheme estimates. The yield begins throughout the thickness of the cover at a pressure about 148% of the limit 

estimated for the con~. These results are independent of the bearing conditions on surfaces A and B (we considered hinge 

support for the finite-element nodes on A and B, on the outer part of A, and on B, and also hinge support only for A). The 

result is evidently affected by the reinforcing effect from the spherical segment. 

We checked the results by hydraulic test on a cover made of steel having the following parameters: yield point a s = 
1.14-1.2 GPa, and relative elongation ab_ = 1.32-1.34 GPa (from tests on four reference specimens after a heat treatment 

cycle). The two-dimensional calculation indicates that the start of yield corresponds to Ps = 65.7 MPa (the estimates for the 

cone give Ps = 85.1 MPa). These calculations imply that a cover with this shape has a carrying capacity more than 14.5 times 

greater than that of  an optimized cover with the same mass made of the same material and having the same diameter as a 

circular gripped plate with profiled thickness [1]. Strain-gauge measurements at three points on the inner surface confirmed 

the two-dimensional elastic-strain calculations. The following loading stages were implemented: 

1) 0-50 MPa, reset to zero, lengths of stages 3 + 1 min; 

2) 0-110 MPa, reset to zero; 

3) 0-240 MPa, failure in sealing and sensor detachment; 

4) 0-190 MPa, that pressure could not be exceeded. 

Examination after the fourth stage showed a dent of diameter about 30 mm and depth about 6 mm in the region of  the cr i max 

point (Fig. 4). 

The strain gauge measurements showed that there was no residual strain in stage 1, while after stage 2, some of the 

sensors recorded residual strains of < 0.06%. After stage 3, although the pressure attained 240 MPa, there was no stability 

loss in the initial stage during yield (to judge from the external appearance of  the cover). Although the cover material went 

over to the yield state, the cover could withstand a pressure 20-50 % higher than the calculated value for yield in the entire 

volume without loss of  stability. This increase in carrying capacity could not be explained completely from the available data 

*For a cover in the second form (power-law form), ~ --, 0, which is not physically realizable, as in the case of the cone with 

~ --- 0. 
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Fig. 2. Cover thickness profiles: 1) cone; 2) sphere; 3) solution b; 4) solution a, N = 2; 5) 

solution a, N = 3. 

Fig. 3. Cover radius profiles: 1) cone; 2) sphere; 3) solution b; 4) solution a, N = 2; 5) 

solution a, N = 3. 

Fig. 4 
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on the a - e  stretching diagram and on the basis of  the shell thickening in biaxial compression. Qualitatively, the effect may 

be due to work hardening under compound loading (biaxial elastoplastic compression with unequal stress components and with 

several loading-unloading cycles) [5]. We also performed two tests on this cover with explosive loading as in Fig. 5. An alloy 
of trotyl with hexogen in a 50:50 proportion was used, which was detonated from the center. The mass was 2.2 kg. 

In the f'rrst test, the cover was installed on a flat circular steel plate lying on a basement plate, while in the second we 

added a component to stimulate a spherical cavity with radius 250 mm in the region of the cover with diameter 400 ram. The 
covers after loading had not lost stability, and in the first case the maximal residual annular compressive strain was 0.25%, 

while the maximum dynamic value was 0.9%. In the second test, we obtained strains correspondingly of 0.8 and 1.4%. This 
shows that there is comparatively high resistance to stability loss in plastic strain on dynamic loading. The shock-wave 

reflection pressure at the pole of  the cover was estimated by calculation [6] as about 380 MPa, which was more than twice the 
limiting quasistatic pressure. 

The convexity was facing the pressure, i.e., the material worked in biaxial compression, which is preferable to the 

converse from the viewpoint of  raising the strength and from the failure-mechanics aspect, since initial defects of detachment 

crack type Cannot grow in that case. Additional research is required on the effects of  initial defects on the failure from the 
advance of shear cracks during plastic flow under biaxial compression and on the stability of that process. 

322 



Estimates have been made on the shape of a cover near-optimal in mass to cover a circular hole in a pressure vessel. 
Hydraulic tests and explosive loading show satisfactory agreement between theory and experiment for the cover shape and 
realized and also that the carrying capacity is greatly increased with the proposed design by comparison with a flat circular 
plate having optimized thickness. 
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